Mechanism of Squalene Cyclization: The Chiral Origin of the C-22 Hydrogen Atoms of Fusidic Acid

By E. CASPI* and R. C. EBERSOLE

(The Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545)

and W. 0. GODTFREDSEN and S. VANGEDAL

(Leo Pharmaceutical Products, Ballerup, Denmark)

Summary The C-2 protons of mevalonic acid are incorporated with retention of configuration into C-22 of fusidic acid; this finding excludes the intermediacy of products with a $\Delta^{20(22)}$ double bond in the formation of a $\Delta^{17(20)}$ double bond in fusidic acid.

THE difficulty^{1,2} of rationalizing the collapse of cation $(1)^3$ to protosterol antibiotics like fusidic acid **(2a)** and others4 all having the *Z* geometry at $\Delta^{17(20)}$ has been pointed out. Stabilization of (1) through direct elimination of the 17β proton (route *'a')* would lead according to Cornforth's hypothesis3b to the wrong geometry about the **17(20)** double bond.^{1,2} Additionally in such a process the cyclase system of F. *coccineum* would be expected to obviate the backbone rearrangement3 through a kinetically controlled stabilization of **(1)** (route *'a').* In contrast during the enzymatic transformation of (1) into lanosterol, it has been suggested that the cyl se system exerts only a marginal influence.⁵

The interpretational difficulty could be alleviated were the formation of (2a) to proceed through a $\Delta^{20(22)}$ intermediate (3a) (1; route 'b') as noted by Corey *et al.*⁶ for the analogue **(3b).** Enzymatic isomerization of **(3a)** could afford **(2a)** (origin of C-22 hydrogens not assigned). Rotation around C-17(20) of **(3a)** would permit positioning of the side chain and the 17-hydrogen suitable for the formation of a $\Delta^{17(20)}$ double bond in (2a).

The presence of a $\Delta^{20(22)}$ intermediate was supported by an observation that incubation^{1,7} of $(3RS; 2S)$ - $[2$ -¹⁴C,2-³H]mevalonic acid (MVA) (3H : 14C ratio 5-26 : 1 atomic ratio 1 : **1)** with F. *coccineum* gave S-fusidic acid **(24** with a **3H** : **14C** ratio of 4.65 : 1, corresponding to the incorporation of 5-3 atoms of tritium and 6 atoms of ¹⁴C. In the case of R-fusidic acid **(2a)** biosynthesized from (3RS,2R)- [2-14C, 2-3H]-MVA (3H : 14C ratio 5-15: 1) the **3H** : 14C ratio of **5.04** : **1** corresponded to an atomic ratio of 6: 6. The results with **(2s)-** [2-14C,2-3H]-MVA could be interpreted as arising from the

TARTE

a D.p.m. per mmol \times 10⁴; entries 1, 6 and 7 were counted at higher dilutions.

loss of a 22-pro-S hydrogen via pathway ['b' shown in (1)] in the biosynthesis of $(2a)$. The specimens of R and S-fusidic acid were thus degraded as shown in the Scheme and the chirality and ³H content at C-22 determined.

∞ - prosthetic group or (+) charge

 $-$ C-2 carbon of MVA \bullet

H_p and H_s - protons from the 2-pro-R and 2-pro-S of MVA ൹ - protons from $4 - pro - R$ of MVA.

The products† obtained from R-fusidic (Table; Experiment I; entries $2-6$) exhibited ${}^{3}H$: ¹⁴C ratios which corresponded to the predicted^{1,8} atomic ratios. One atom of tritium⁺ was lost on the NAD⁺-YADH oxidation of (5b) to (6a) (Experiment I; entries 6, 7), thus establishing the $1R$ configuration of the alcohol.¹¹

The products from the S-fusidic acid had constant 3H: 14C ratios (Experiment II; entries 2-7). Clearly NAD+-YADH

by comparison with authentic samples.

oxidation of the alcohol (5b) to aldehyde (6a) proceeded without loss of tritium. Hence if (5b) had a tritium atom at C-1 the alcohol must have the 1S configuration. Consequently the diene^{1,12} (7) (from S-fusidic acid) was oxidized¹³ to (6c) which was purified as the methyl ester (6d) by g.l.c. The ³H:¹⁴C ratio of (6d) indicates that of the two ³H atoms present in (5b) only one was retained. Therefore

<u>SCHEME</u>

 a ; i H_2 ;⁷,⁹ ii CH₂N₂. *b*; i O₃; ii LiAlH₄. *c*; H₂IO₆. *d*; i CF₃-COOOH;^{10b} ii LiAlH₄; iii prep. g.l.c. *e*; NAD⁺-Yeast alcohol dehydrogenase (YADH). *f*; i LiCl-HCO·NMe₂; ¹² ii CH₂N₂

one atom of tritium must be present at C-1 of (5b) and (6a). It follows that a tritium atom originating from $(2S)$ -[2-¹⁴C₁-2-³H]-MVA is present a the 22- $\mathit{pro-S}$ position of the derived S-fusidic acid.

The results demonstrate that the C-2 protons of MVA are incorporated into C-22 of fusidic acid with retention of their stereochemical integrity. The intermediacy of a $\Delta^{20(22)}$ † All the compounds were homogenous by g.l.c. or t.l.c. Derivatives were identified by n.m.r., mass, and i.r. spectroscopy, etc., and

[†] The removal of only 0.8 atom of tritium may have been caused by partial air oxidation of the alcohol (see ref. 11).

J.C.S. Снем. Сомм., 1972

precursor is thus excluded. Because the C-13 hydrogen of fusidic acid is derived from the 4-pro R proton of $MVA₁$ ¹ Δ^{12} or $\Delta^{13(17)}$ intermediates also cannot be involved in the biosynthesis. Hence it seems that the stabilization of (1) in the formation of $(2a)$ cannot be rationalized solely on an organic chemical basis⁵ without some enzyme participation.¹

This work was supported by Grants from the National Institutes of Health. The authors thank Dr. L. J. Mulheirn for preliminary experiments.

(Received, 7th August 1972; Com. 1382.)

¹ L. J. Mulheirn and E. Caspi, *J. Biol. Chem.*, 1971, 246, 2494; E. Caspi and L. J. Mulheirn, *J. Amer. Chem. Soc.*, 1970, 92, 404.
² L. J. Mulheirn and P. J. Ramm, *Chem. Soc. Rev.*, 1972, 1, 259.
³ (a) A. Eschenm

Internat. Edn. 1968, 7, 903.

⁴ (a) T. G. Halsall, E. R. H. Jones, G. Lowe, and C. E. Newall, Chem. Comm., 1966, 685; P. Oxley, ibid., p. 729; (b) S. Okuda, S. Iwasaki, M. I. Sair, Y. Machida, A. Inoue, K. Tsuda, and Y. Nakayama, Tetrahedron Letters, 1967, 2295; W. von Daehne, H. Lorch, and W. O. Godtfredsen, ibid., 1968, 4843.

⁶ E. E. van Tamelen and J. H. Freed, *J. Amer. Chem. Soc.*, 1970, 92, 7206; E. E. van Tamelen, R. P. Hanzlik, R. B. Clayton, and A. L. Burlingame, *ibid.*, p. 2137.
⁶ E. J. Corey, P. R. O. de Montellano, and H. Yamamot

⁷ W. O. Godtfredsen, W. von Daehne, S. Vangedal, A. Marquet, D. Arigoni, and A. Melera, Tetrahedron, 1965, 21, 3505.

⁸ G. Popjak and J. W. Cornforth, *Biochem. J.*, 1966, 101, 553.
⁹ W. O. Godtfredsen and S. Vangedal, *Tetrahedron*, 1962, 18, 1029.

¹⁰ (a) J. B. Greig, K. R. Varma, and E. Caspi, *J. Amer. Chem. Soc.*, 1971, 93, 760; (b) M. F. Hawthorne, W. D. Emmons, and K. S. McCallum, ibid., 1958, 80, 6393.

¹¹ J. B. Greig, K. R. Varma, and E. Caspi, *J. Amer. Chem. Soc.*, 1971, 93, 760; E. Caspi, K. R. Varma, and J. B. Greig, Chem. Comm., 1969, 45; K. R. Varma and E. Caspi, *J. Org. Chem.*, 1969, 34, 2489.
¹² W. O. Godtfredsen, W. von Daehne, and S. Vangedal, *Chem. Comm.*, 1966, 638.

¹³ D. M. Piatak, H. B. Bhat, and E. Caspi, J. Org. Chem., 1969, 34, 112; D. M. Piatak, G. Herbst, J. Wicha, and E. Caspi, ibid., p. 116.